Géométrie vectorielle

I- Colinéarité de vecteurs :

1.1. Définition:

On dit que deux vecteurs \vec{u} et \vec{v} sont **colinéaires** s'il existe un réel k tel que $\vec{u} = k\vec{v}$.

Rqe : le vecteur nul est colinéaire à tout autre vecteur.

<u>Propriété</u>: (DAC) Soient deux vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. Les vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si xy' - yx' = 0

1.2. Vecteur directeur d'une droite :

Un vecteur non nul \vec{u} est **vecteur directeur** de la droite d s'il existe deux points A et B de d tels que $\overrightarrow{AB} = \vec{u}$.

<u>Conséquence</u>: deux droites sont parallèles si et seulement si leurs vecteurs directeurs sont colinéaires.

<u>Propriété</u>: (DAC) La droite d passant par un point A de vecteur directeur \vec{u} est l'ensemble des points M tels que les vecteurs \vec{u} et \overrightarrow{AM} sont colinéaires.

- II- Equations de droites : Le plan est muni d'un repère.
- 2.1. Droite définie par un point et un vecteur :

<u>Propriété</u>: Toute droite d a une équation de la forme ax + by + c = 0 avec $(a,b) \neq (0,0)$. Un vecteur directeur de d est $\vec{u} \begin{pmatrix} -b \\ a \end{pmatrix}$.

Rqe: Dans ce cas et si $b \neq 0$, le coefficient directeur de la droite est $m = -\frac{a}{b}$.

2.2. Equation cartésienne d'une droite : DAC

L'ensemble des points M(x; y) tels que ax + by + c = 0 avec $(a, b) \neq (0, 0)$ est une droite.

Une équation d'une droite d de la forme ax + by + c = 0 avec $(a, b) \neq (0, 0)$ est appelée **équation cartésienne** de d.

Rqe: lorsque $b \neq 0$, cette équation s'écrit $y = -\frac{a}{b}x - \frac{c}{b}$, équation réduite de d.

2.3. Position relative de deux droites :

Propriété:

d et d' sont deux droites d'équation cartésienne respectives ax + by + c = 0 et a'x + b'y + c' = 0 sont parallèles si et seulement si ab' - a'b = 0.

Rqe: C'est également la condition nécessaire et suffisante pour qu'un système linéaire de deux équations à deux inconnues $\begin{cases} ax + by + c = 0 \\ a'x + b'y + c' = 0 \end{cases}$ ait une unique solution.

III- Expression d'un vecteur du plan en fonction de deux vecteurs non colinéaires :

3.1. Existence et unicité de la décomposition : Soient \vec{u} et \vec{v} deux vecteurs non colinéaires.

Pour tout vecteur \vec{w} , il existe un couple unique (a; b) de réels tel que $\vec{w} = a\vec{u} + b\vec{v}$.

3.2. Exemples importants:

 $\circ A, B, C$ trois points. I le milieu de [BC]. Alors $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$. $\circ ABC$ un triangle, G son centre de gravité. Alors $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.